The PcoC copper resistance protein coordinates Cu(I) via novel S-methionine interactions.
نویسندگان
چکیده
The E. coli copper resistance protein PcoC enhances survival of a bacterium under conditions of extreme copper stress. This small protein has no cysteines, but does have an unusual methionine-rich sequence motif, suggesting that methionine ligation may be important in Cu binding. It is shown that PcoC binds both Cu(I) and Cu(II), in addition to binding Hg(II) and Ag(I). Previously crystallographic studies of PcoC had shown that the apo protein adopts a beta-barrel fold typical of that seen for blue-copper electron-transfer proteins. However, in contrast with electron-transfer proteins, where the Cu(I) and Cu(II) structures are nearly identical, X-ray absorption spectra show that the structures of the Cu site in reduced and oxidized PcoC are dramatically different. Cu(II) PcoC has a tetragonal Cu structure in which the Cu is coordinated to O or N ligands, including at least two histidine ligands. Cu(I) PcoC has a trigonal site with two methionine ligands. This is the first well-characterized example of a methionine-rich protein Cu binding site, demonstrating a new type of biological Cu coordination chemistry.
منابع مشابه
Spectroscopy of Cu(II)-PcoC and the multicopper oxidase function of PcoA, two essential components of Escherichia coli pco copper resistance operon.
The plasmid-encoded pco copper resistance operon in Escherichia coli consists of seven genes that are expressed from two pco promoters in response to elevated copper; however, little is known about how they mediate resistance to excess environmental copper. Two of the genes encode the soluble periplasmic proteins PcoA and PcoC. We show here that inactivation of PcoC, and PcoA to a lesser extent...
متن کاملThe functional roles of the three copper sites associated with the methionine-rich insert in the multicopper oxidase CueO from E. coli.
CueO from Escherichia coli is a multicopper oxidase (MCO) involved in copper tolerance under aerobic conditions. It features the four typical copper atoms that act as electron transfer (T1) and dioxygen reduction (T2, T3; trinuclear) sites. In addition, it displays a methionine- and histidine-rich insert that includes a helix that blocks physical access to the T1 site. In crystalline form, the ...
متن کاملThe S2 Cu(i) site in CupA from Streptococcus pneumoniae is required for cellular copper resistance.
Pathogenic bacteria have evolved copper homeostasis and resistance systems for fighting copper toxicity imposed by the human immune system. Streptococcus pneumoniae is a respiratory pathogen that encodes an obligatorily membrane-anchored Cu(i) binding protein, CupA, and a P1B-type ATPase efflux transporter, CopA. The soluble, cytoplasmic domain of CupA (sCupA) contains a binuclear Cu(i) cluster...
متن کاملMolecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli.
The cus determinant of Escherichia coli encodes the CusCFBA proteins that mediate resistance to copper and silver by cation efflux. CusA and CusB were essential for copper resistance, and CusC and CusF were required for full resistance. Replacements of methionine residues 573, 623, and 672 with isoleucine in CusA resulted in loss of copper resistance, demonstrating their functional importance. ...
متن کاملX-ray absorption investigation of a unique protein domain able to bind both copper(I) and copper(II) at adjacent sites of the N-terminus of Haemophilus ducreyi Cu,Zn superoxide dismutase.
The N-terminal metal binding extension of the Cu,Zn superoxide dismutase from Haemophilus ducreyi is constituted by a histidine-rich region followed by a methione-rich sequence which shows high similarity with protein motifs involved in the binding of Cu(I). X-ray absorption spectroscopy experiments selectively carried out with peptides corresponding to the two metal binding regions indicate th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 125 2 شماره
صفحات -
تاریخ انتشار 2003